问答题
某一无记忆信源的符号集为{0,1},已知P(0)=1/4,P(1)=3/4。 (1)求符号的平均熵; (2)有100个符号构成的序列,求某一特定序列(例如有m个“0”和(100 - m)个“1”)的自信息量的表达式; (3)计算(2)中序列的熵。
问答题 连续随机变量X和Y的联合概率密度为:,求H(X), H(Y), H(XYZ)和I(X;Y)。
问答题 给定语音信号样值X的概率密度为,求Hc(X),并证明它小于同样方差的正态变量的连续熵。
问答题 每帧电视图像可以认为是由3×105个像素组成的,所有像素均是独立变化,且每像素又取128个不同的亮度电平,并设亮度电平是等概出现,问每帧图像含有多少信息量?若有一个广播员,在约10000个汉字中选出1000个汉字来口述此电视图像,试问广播员描述此图像所广播的信息量是多少(假设汉字字汇是等概率分布,并彼此无依赖)?若要恰当的描述此图像,广播员在口述中至少需要多少汉字?