问答题
设8个等概率分布的消息通过传递概率为p的BSC进行传送,8个消息相应编成下述码字: 试问: (1)接收到第一个数字0与M1之间的互信息; (2)接收到第二个数字也是0时,得到多少关于M1的附加互信息; (3)接收到第三个数字仍为0时,又增加了多少关于M1的互信息; (4)接收到第四个数字还是0时,再增加了多少关于M1的互信息。
问答题 黑白气象传真图的消息只有黑色和白色两种,即信源X={黑,白},设黑色出现的概率为P(黑)=0.3,白色出现的概率为P(白)=0.7。 (1)假设图上黑白消息出现前后没有关联,求熵H(X); (2)假设消息前后有关联,其依赖关系为P(白|白)=0.9,P(黑|白)=0.1,P(白|黑)=0.2,P(黑|黑)=0.8,求此一阶马尔克夫信源的熵H2。 (3)分别求上述两种信源的冗余度,并比较H(X)和H2的大小,并说明其物理意义。
问答题 证明离散信源有,并说明等式成立的条件。
问答题 证明离散平稳信源有,试说明等式成立的条件。